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Abstract

In this article we develop an improved version of the classical fifth-order weighted essentially non-oscillatory finite dif-
ference scheme of [G.S. Jiang, C.W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys. 126 (1996)
202–228] (WENO-JS) for hyperbolic conservation laws. Through the novel use of a linear combination of the low order
smoothness indicators already present in the framework of WENO-JS, a new smoothness indicator of higher order is
devised and new non-oscillatory weights are built, providing a new WENO scheme (WENO-Z) with less dissipation
and higher resolution than the classical WENO. This new scheme generates solutions that are sharp as the ones of the
mapped WENO scheme (WENO-M) of Henrick et al. [A.K. Henrick, T.D. Aslam, J.M. Powers, Mapped weighted essen-
tially non-oscillatory schemes: achieving optimal order near critical points, J. Comput. Phys. 207 (2005) 542–567], however
with a 25% reduction in CPU costs, since no mapping is necessary. We also provide a detailed analysis of the convergence
of the WENO-Z scheme at critical points of smooth solutions and show that the solution enhancements of WENO-Z and
WENO-M at problems with shocks comes from their ability to assign substantially larger weights to discontinuous stencils
than the WENO-JS scheme, not from their superior order of convergence at critical points. Numerical solutions of the
linear advection of discontinuous functions and nonlinear hyperbolic conservation laws as the one dimensional Euler equa-
tions with Riemann initial value problems, the Mach 3 shock–density wave interaction and the blastwave problems are
compared with the ones generated by the WENO-JS and WENO-M schemes. The good performance of the WENO-Z
scheme is also demonstrated in the simulation of two dimensional problems as the shock–vortex interaction and a Mach
4.46 Richtmyer–Meshkov Instability (RMI) modeled via the two dimensional Euler equations.
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1. Introduction

In the numerical simulation of compressible flows modeled by means of hyperbolic conservation laws in the
form
ou

ot
þ $ � FðuÞ ¼ 0; ð1Þ
the development of finite time discontinuities generates O(1) oscillations, known as the Gibbs phenomenon,
causing loss of accuracy and numerical instability. Among many choices of shock capturing schemes such
as the piecewise parabolic method (PPM) [7], the essentially non-oscillatory scheme (ENO) [6], high-order
weighted essentially non-oscillatory schemes (WENO) [1,2] have been extensively used for the simulation of
the fine scale and delicate structures of the physical phenomena related to shock–turbulence interactions.

WENO schemes owe their success to the use of a dynamic set of stencils, where a nonlinear convex com-
bination of lower order polynomials adapts either to a higher order approximation at smooth parts of the
solution, or to an upwind spatial discretization that avoids interpolation across discontinuities and provides
the necessary dissipation for shock capturing. The nonlinear coefficients of the convex combination, hereafter
referred to as weights, are based on the local smoothness indicators, which measure the sum of the normalized
squares of the scaled L2 norms of all derivatives of the lower order polynomials [2]. An essentially zero weight
is assigned to those lower order polynomials whose underlining stencils contain high gradients and/or shocks,
yielding an essentially non-oscillatory solution at discontinuities. At smooth parts of the solution, higher order
is achieved through the mimicking of the central upwinding scheme of maximum order, when all smoothness
indicators are about the same size. Hence, an efficient design of these smoothness indicators is a very impor-
tant issue for WENO schemes.

The classical choice of smoothness indicators in [2] generated weights that failed to recover the maximum
order of the scheme at points of the solution where the first or higher derivatives of the flux function vanish.
This fact was clearly pointed out at Henrick et al. [3]. In their study, necessary and sufficient conditions on the
weights, for optimality of the order, were derived and a correcting mapping to be applied to the classical
weights was devised. The resulting mapped WENO scheme of [3] recovered the optimal order of convergence
at critical points of a smooth function and presented sharper results close to discontinuities. In this article, we
follow a different approach, which is to improve on the classical smoothness indicators to obtain weights that
satisfies the sufficient conditions for optimal order. Taylor series analysis of the classical smoothness indicators
reveals that a simple combination of them would give higher order information about the regularity of the
numerical solution. The incorporation of this new higher order information into the weights definition
improves the convergence order at the critical points of smooth parts of the solution, as well as decreases
the dissipation close to discontinuities, while maintaining stability and the essentially non-oscillatory behavior.

The enhancements of the new scheme come from the larger weights that it assigns to discontinuous stencils.
Contrary to common belief, the strategy should be to augment the influence of the stencil containing the dis-
continuity as much as possible, without destroying the essentially non-oscillatory behavior. A comparison of
the weights of the classical, the mapped and the new WENO scheme close to a discontinuity shows that the
ratio between the weight of a discontinuous stencil and a continuous one increases slightly from the classical
weights to the mapped weights, and increases substantially with the new weights proposed in this article. The
computational cost of the new scheme is the same as the WENO-JS and around 75% of WENO-M.

This paper is organized as follows: in Section 2, the classical WENO scheme of Jiang and Shu [2] and the
mapped weights version of Henrick et al. [3] are described and some of the relevant analytical results are
reviewed. The new WENO scheme is introduced in Section 3 where a detailed discussion about the new
smoothness indicator is given. In Section 4, we analyze the order of convergence of WENO-Z at critical points
of a smooth solution. In Section 5, all three schemes are compared with the numerical simulation of the linear
advection of discontinuous functions, the one dimensional Euler equations with Riemann initial values prob-
lems (SOD, LAX and 123), the Mach 3 shock density–wave interaction and the interactive blastwaves prob-
lems. We end the article showing results on the two dimensional Mach 3 shock–vortex interaction and the
Mach 4.46 Richtmyer–Meshkov Instability (RMI) along with the CPU timing of the three WENO schemes.
Concluding remarks are given in Section 6.
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2. Weighted essentially non-oscillatory schemes

In this section, we briefly describe the fifth-order weighted essentially non-oscillatory conservative finite dif-
ference scheme when applied to hyperbolic conservation laws as in (1). Without loss of generality, we will
restrict our discussion to the one dimensional scalar case. Extensions to system of equations and higher spatial
dimensions present no extra complexity with regards to our main point which is the design of new weights for
the WENO scheme.

Consider an uniform grid defined by the points xi ¼ iDx; i ¼ 0; . . . ;N , which are also called cell centers,
with cell boundaries given by xiþ1

2
¼ xi þ Dx

2
, where Dx is the uniform grid spacing. The semi-discretized form

of (1), by the method of lines, yields a system of ordinary differential equations
Fig. 1.
WENO
duiðtÞ
dt
¼ �of

ox

����
x¼xi

; i ¼ 0; . . . ;N ; ð2Þ
where uiðtÞ is a numerical approximation to the point value uðxi; tÞ. A conservative finite difference formulation
for hyperbolic conservation laws requires high-order consistent numerical fluxes at the cell boundaries in order
to form the flux differences across the uniformly spaced cells. The conservative property of the spatial discret-
ization is obtained by implicitly defining the numerical flux function hðxÞ as
f ðxÞ ¼ 1

Dx

Z xþDx
2

x�Dx
2

hðnÞdn;
such that the spatial derivative in (2) is exactly approximated by a conservative finite difference formula at the
cell boundaries,
duiðtÞ
dt
¼ 1

Dx
hiþ1

2
� hi�1

2

� �
; ð3Þ
where hi�1
2
¼ hðxi�1

2
Þ.

High-order polynomial interpolations to hi�1
2

are computed using known grid values of f, fi ¼ f ðxiÞ. The
classical fifth-order WENO scheme uses a 5-points stencil, hereafter named S5, which is subdivided into three
3-points stencils fS0; S1; S2g, as shown in Fig. 1. The fifth-order polynomial approximation
f̂ i�1

2
¼ hi�1

2
þOðDx5Þ is built through the convex combination of the interpolated values f̂ kðxi�1

2
Þ, in which

f kðxÞ is the third degree polynomial below, defined in each one of the stencils Sk:
f̂ i�1
2
¼
X2

k¼0

xk f̂ kðxi�1
2
Þ; ð4Þ
xi xi+1 xi+2xi-1xi-2 xi+1/2

S2

S0

S1

S5 τ5

β0

β2

β1

The computational uniform grid xi and the 5-points stencil S5, composed of three 3-points stencils S0; S1; S2, used for the fifth-order
reconstruction step.
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where
f̂ kðxiþ1
2
Þ ¼ f̂ k

iþ1
2
¼
X2

j¼0

ckjfi�kþj; i ¼ 0; . . . ;N : ð5Þ
The ckj are Lagrangian interpolation coefficients (see [2]), which depend on the left-shift parameter k ¼ 0; 1; 2,
but not on the values fi.

It can be shown by Taylor series expansion of (5) that
f̂ k
i�1

2
¼ hi�1

2
þ AkDx3 þOðDx4Þ; ð6Þ
where the values Ak are independent of Dx.
The weights xk are defined as
xk ¼
akP2
l¼0al

; ak ¼
dk

ðbk þ �Þ
p : ð7Þ
The coefficients d0 ¼ 3
10
; d1 ¼ 3

5
; d2 ¼ 1

10
are called the ideal weights since they generate the central upstream

fifth-order scheme for the 5-points stencil S5. We refer to ak as the unnormalized weights. The parameter � is
used to avoid the division by zero in the denominator and p ¼ 2 is chosen to increase the difference of scales of
distinct weights at non-smooth parts of the solution.

The smoothness indicators bk measure the regularity of the kth polynomial approximation f̂ kðxiÞ at the
stencil Sk and are given by
bk ¼
X2

l¼1

Dx2l�1

Z x
iþ1

2

x
i�1

2

dl

dxl
f̂ kðxÞ

� �2

dx: ð8Þ
The expression of the bk in terms of the cell averaged values of f ðxÞ; fi are given by
b0 ¼
13

12
fi�2 � 2f i�1 þ fið Þ2 þ 1

4
fi�2 � 4f i�1 þ 3f ið Þ2; ð9Þ

b1 ¼
13

12
fi�1 � 2f i þ fiþ1ð Þ2 þ 1

4
fi�1 � fiþ1ð Þ2; ð10Þ

b2 ¼
13

12
fi � 2f iþ1 þ fiþ2

� �2 þ 1

4
3f i � 4f iþ1 þ fiþ2

� �2
: ð11Þ
and their Taylor series expansions at xi are
b0 ¼ f 0i
2Dx2 þ 13

12
f 00i

2 � 2

3
f 0i f 000i

� �
Dx4 � 13

6
f 00i f 000i �

1

2
f 0i f

0000

i

� �
Dx5 þOðDx6Þ; ð12Þ

b1 ¼ f 0i
2Dx2 þ 13

12
f 002i þ

1

3
f 0i f 000i

� �
Dx4 þOðDx6Þ; ð13Þ

b2 ¼ f 02i Dx2 þ 13

12
f 002i �

2

3
f 0i f 000i

� �
Dx4 þ 13

6
f 00i f 000i �

1

2
f 0i f

0000

i

� �
Dx5 þOðDx6Þ: ð14Þ
The general idea of the weights definition (7) is that on smooth parts of the solution, the smoothness indicators
bk are all small and about the same size, generating weights xk that are good approximations to the ideal
weights dk. On the other hand, if the stencil Sk contains a discontinuity, bk is O(1) and the corresponding
weight xk is small relatively to the other weights. This implies that the influence of the polynomial approxi-
mation of hi�1

2
taken across the discontinuity is diminished up to the point where the convex combination (4) is

essentially non-oscillatory. Fig. 1 shows the case where stencil S2 is discontinuous, yielding b0 and b1 to be
much smaller than b2. By (7), this results on x2 being a small number in the convex combination (4) (see also
Fig. 3(a) of Section 3).

The process synthesized by (4) and (5) is called the WENO reconstruction step, for it reconstructs the values of
hðxÞ at the cell boundaries of the interval I i ¼ ½xi�1

2
; xiþ1

2
� from its cell averaged values f ðxÞ in the stencils
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fSk; k ¼ 0; 1; 2g. In [3], truncation error analysis of the finite difference Eq. (3) led to necessary and sufficient con-
ditions on the weights xk for the WENO scheme to achieve the formal fifth-order ðOðDx5ÞÞ convergence at
smooth parts of the solution. It was also found that at first-order critical points xc, points where the first derivative
of the solution vanishes ðf 0ðxcÞ ¼ 0Þ, convergence degraded to only third-order ðOðDx3ÞÞ, a fact that was hidden
by the homogenization of the weights caused by the use of a relatively large value for � in (7). Since this analysis is
relevant to the description of the new WENO scheme introduced at next section, we recall its essential steps.

Adding and subtracting
P2

k¼0dkf̂ k
i�1

2
to (4), gives:
f̂ i�1
2
¼
X2

k¼0

dkf̂ k
i�1

2
þ
X2

k¼0

ðx�k � dkÞf̂ k
i�1

2
¼ hi�1

2
þ B�Dx5 þOðDx6Þ

h i
þ
X2

k¼0

ðx�k � dkÞf̂ k
i�1

2
: ð15Þ
(The superscripts ± corresponds to the ± in the f k
i�1

2
.) Expanding the second term with the help of (6) we

obtain:
X2

k¼0

ðx�k � dkÞf̂ k
i�1

2
¼
X2

k¼0

ðx�k � dkÞ hi�1
2
þ AkDx3 þOðDx4Þ

� �
ð16Þ

¼ hi�1
2

X2

k¼0

ðx�k � dkÞ þ Dx3
X2

k¼0

Akðx�k � dkÞ þ
X2

k¼0

ðx�k � dkÞOðDx4Þ: ð17Þ
Substituting the result above at a finite difference formula for the polynomial approximation f̂ i�1
2
:

f̂ iþ1
2
� f̂ i�1

2

Dx
¼

hiþ1
2
� hi�1

2

Dx
þOðDx5Þ þ

P2
k¼0ðxþk � dkÞf̂ k

iþ1
2
�
P2

k¼0ðx�k � dkÞf̂ k
i�1

2

Dx
ð18Þ

¼ f 0ðxiÞ þOðDx5Þ þ
hiþ1

2

P2
k¼0ðxþk � dkÞ � hi�1

2

P2
k¼0ðx�k � dkÞ

Dx

" #

þ Dx2
X2

k¼0

Akðxþk � x�k Þ þ
X2

k¼0

ðxþk � dkÞ �
X2

k¼0

ðx�k � dkÞ
" #

OðDx3Þ: ð19Þ
The OðDx5Þ term remains after division by Dx because Bþ ¼ B� in (15). Thus, necessary and sufficient condi-
tions for fifth-order convergence in (3) are given by
X2

k¼0

ðx�k � dkÞ ¼ OðDx6Þ; ð20Þ

X2

k¼0

Akðxþk � x�k Þ ¼ OðDx3Þ; ð21Þ

x�k � dk ¼ OðDx2Þ: ð22Þ
Note that due to normalization
P2

k¼0x
�
k ¼

P2
k¼0dk, so the first constraint is always satisfied and, from (17), we

see that a sufficient condition for fifth-order of convergence is simply given by
x�k � dk ¼ OðDx3Þ: ð23Þ

Let us now check how the classical WENO weights xk (7) behave with respect to the restrictions above. It was
shown in [3] that if the smoothness indicators bk satisfy bk ¼ Dð1þOðDxpÞÞ, then the weights xk satisfy
xk ¼ dk þOðDxpÞ, where D is a non-zero constant independent of k. Looking at the Taylor series expansions
of the smoothness indicators bk in (12)–(14), we see that bk ¼ Dð1þOðDx2ÞÞ, implying that xk ¼ dk þOðDx2Þ.
This requires that condition (21) must be as well satisfied in order for the classical WENO to have the expected
fifth-order convergence. This indeed happens and can be easily confirmed with any symbolic calculation.

Nevertheless, at critical points this situation becomes more complex depending on the number of vanishing
derivatives of f. For instance, if only the first derivative vanishes, then bk ¼ Dð1þOðDxÞÞ and
xk ¼ dk þOðDxÞ, degrading the convergence of the scheme to third order only. If the second derivative also
vanishes, then convergence decreases even more to second order.
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A fix to this deficiency of the classical weights xk was proposed in [3] through the application of a mapping
function that increased the approximation of xk to the ideal weights dk at critical points to the required third-
order OðDx3Þ in (23). The mapping function gkðxÞ used in [3] is defined as
gkðxÞ ¼
x dk þ d2

k � 3dkxþ x2
� �

d2
k þ x 1� 2dkð Þ

ð24Þ
and is a non-decreasing monotone function with the following properties:

1. 0 6 gkðxÞ 6 1, gkð0Þ ¼ 0 and gkð1Þ ¼ 1.
2. gkðxÞ � 0 if x � 0; gkðxÞ � 1 if x � 1.
3. gkðdkÞ ¼ dk, g0kðdkÞ ¼ g00kðdkÞ ¼ 0.
4. gkðxÞ ¼ dk þOðDx6Þ, if x ¼ dk þOðDx2Þ.

Numerical results in [3] confirmed the usefulness of the mapping, since with the modified weights the result-
ing WENO scheme (WENO-M) recovered the full fifth-order convergence at critical points of a smooth solu-
tion. Note, however, that if at a critical point the second derivative also vanishes, then bk ¼ Dð1þOð1ÞÞ,
implying xk ¼ dk þOð1Þ (see Eqs. (12)–(14)) and the mapping is unable to improve the weights approxima-
tion, maintaining the same second order of convergence as the classical WENO.

Remark 1. For problems with shocks, the O(1) truncation error at the discontinuities diminishes the advantages
of such order improvements at critical points. Nevertheless, the numerical results obtained by the mapped
scheme of [3] are clearly superior to the ones of the classical WENO even for problems with shocks at the initial
conditions. Distinctly from [3], we do not credit these enhancements of the numerical solution to the higher
order of approximation of the mapped weights at critical points, but to the smaller dissipation that results from
the assignment of larger weights to discontinuous stencils when using the mapped scheme. As we shall see in the
next section, the new WENO scheme assign weights to stencils with discontinuities that are even larger than the
mapped WENO ones, generating even sharper solutions, while still maintaining the non-oscillatory property.
3. The new WENO scheme

In this section, we devise a new set of WENO weights xk that satisfies the necessary and sufficient condi-
tions (22) for fifth-order convergence. The novel idea is to use the whole 5-points stencil S5 (see Fig. 1) to
devise a new smoothness indicator of higher order than the classical smoothness indicators bk. We denote
it by s5 and it is simply defined as the absolute difference between b0 and b2 at xi, namely
s5 ¼ jb0 � b2j: ð25Þ

It is straightforward to see from (12)–(14) that the truncation error of s5 is
13

3
jf 00i f 000i jDx5 þOðDx6Þ ð26Þ
and that it is a measure of the higher derivatives of f, when they exist, and is indeed computed using the whole
5-points stencil S5. Here, we list the important properties of s5:

� If S5 does not contain discontinuities, then s5 ¼ OðDx5Þ � bk for k ¼ 0; 1; 2;
� if the solution is continuous at some of the Sk, but discontinuous in the whole S5, then bk � s5, for those k

where the solution is continuous;
� s5 6 maxkbk.

We now define the new smoothness indicators bk
z as
bz
k ¼

bk þ �
bk þ s5 þ �

� �
; k ¼ 0; 1; 2 ð27Þ
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and the new WENO weights xz
k as
xz
k ¼

az
kP2

l¼0a
z
l

; az
k ¼

dk

bz
k

¼ dk 1þ s5

bk þ �

� �
; k ¼ 0; 1; 2; ð28Þ
where � is a small number (see the remark below) used to avoid the division by zero in the denominator of (27).
All bz

k are smaller than unity and they are all close to 1 at smooth parts of the solution. They are in fact the
normalization of the classical smoothness indicators bk by the higher order information contained in s5.

The following notation will be used in order to distinguish between the three different WENO schemes con-
sidered in this work. The mapped weights of [3] are denoted as xM

k and the resulting mapped WENO scheme
as WENO-M. The new WENO scheme, introduced below, is referred as WENO-Z and the superscript z is
added to all quantities related to it. To keep a coherent notation throughout the article, the classical WENO
weights and smoothness indicators carry no superscript, although, the classical WENO scheme of [2] is
referred as WENO-JS.

Remark 2. The role of the parameter � was discussed in [3], where it was shown that the value of 1	 10�6,
commonly suggested in the literature, would dominate over the smoothness indicators bk at the denominators
of the classical WENO weights, hiding the suboptimal performance of the classical scheme on critical points.
In this work, we use much smaller values of � for the WENO-M and WENO-Z schemes, that will be clearly
indicated along with the numerical experiments, in order to force this parameter to play only its original role
of not allowing vanishing denominators at the weights definitions.

We now investigate the order of approximation of the new weights xz
k with respect to the ideal weights dk.

We first study the case where there are no critical points. These will be studied separately in the next section.
We also take � ¼ 0 in the analysis below. It is straightforward to check from (12)–(14) and the properties of s5

that, at smooth parts of the solution,
1þ s5

bk

� �
¼ 1þOðDx3Þ; k ¼ 0; 1; 2
and from (28),
xz
k ¼ dk þOðDx3Þ; k ¼ 0; 1; 2: ð29Þ
Thus, the new weights xz
k satisfy the sufficient condition (23), providing the formal fifth order of accuracy to

the WENO-Z scheme at non-critical points of a smooth solution.
Let us take a look at a numerical example through the discontinuous function:
uðx; 0Þ ¼ f ðxÞ ¼
� sinðpxÞ � 1

2
x3 �1 < x < 0;

� sinðpxÞ � 1
2
x3 þ 1 0 6 x 6 1;

(
ð30Þ
consisting of a piecewise sine function with a jump discontinuity at x ¼ 0.
Fig. 2(a) shows the numerical solutions of the wave equation ut ¼ ux at t ¼ 8, for the WENO-JS, WENO-M

and WENO-Z schemes, with (30) as initial condition, along with the exact solution. Fig. 2(b) shows the values
of the smoothness indicators b0; b1; b2 and of the high-order smoothness indicator s5 of the WENO-Z scheme
with � ¼ 10�40. Note that s5 is only comparable to one of the bk at stencils that include the discontinuity.

Next, we examine the new weights xz
k on stencils containing discontinuities and confirm their distinction

with respect to the classical weights. Consider the simple case of a shock localized in stencil S2, while the solu-
tion in stencils S0 and S1 are smooth (see Fig. 1). The ratios between b0; b1 and b2 are larger than the same
ratios using the classical weights:
bz
k

bz
2

¼ bk

b2

b2 þ s5

bk þ s5

P
bk

b2

; k ¼ 0; 1; ð31Þ
where we used the fact that b2 > bk; k ¼ 0; 1.
This has the straightforward implication that the relative importance of the stencil S2, the one containing

the discontinuity, is increased in the final convex combination of the WENO-Z scheme (see Fig. 3(a)–(c)).
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Fig. 3. The distribution of the ideal weights dk and the weights xk ; k ¼ 0; 1; 2 for (a) WENO-JS ð� ¼ 10�6Þ, (b) WENO-M ð� ¼ 10�40Þ and
(c) WENO-Z ð� ¼ 10�40Þ schemes at the first step of the numerical solution of the wave equation ut ¼ ux, with periodic initial condition
given by (30). The ideal weights dk are shown in lines and the weights xk are shown in symbols. The vertical axis is shown in log10 scale.
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Fig. 3(a)–(c) show the weights xk, for the WENO-JS ð� ¼ 10�6Þ, WENO-M ð� ¼ 10�40Þ and WENO-Z
ð� ¼ 10�40Þ schemes at the first step of the numerical solution of the wave equation ut ¼ ux, with periodic initial
condition given by (30). The ideal weights dk are also plotted as lines and the vertical axis is in log10 scale.

� Far away from the discontinuity x ¼ 0, the weights xk (symbols) for all schemes correctly match the cor-
responding ideal weights dk (lines).
� x ¼ �0:02 is the first location where the 5-points stencil S5 contains the discontinuity. At this grid point, the

rightmost stencil S2 has its weight x2 decreased to a much smaller value than x0 and x1, while these two are
slightly increased to reflect their larger relevance at the reconstruction step.
� At x ¼ �0:01, the discontinuity is present at S1 and S2 and a small value is assigned to x1 as well, yielding

x0 � Oð1Þ.
� At x ¼ 0:01, a symmetric scenario occurs and x2 assumes the largest value.
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While this situation is general for all schemes, the main difference is at the ratios between the weights for
discontinuous and continuous stencils, as discussed above. While WENO-JS sets very small values for the dis-
continuous stencils, around 10�8, and the mapping of WENO-M generates a small increase on these values,
WENO-Z yields a more substantial increase to 10�4. In different words, the convex combinations of WENO-
M and WENO-Z are closer to the central scheme than the one of WENO-JS, incurring in less dissipation.
Looking closer at the numerical solutions of Fig. 2(a), we also see that the approximation of WENO-Z is
slightly sharper at the discontinuity.

Remark 3. In the numerical experiments of Section 5 we will once again notice this slightly superior sharpness
of WENO-Z with respect to WENO-M at problems with discontinuities. Nevertheless, as we should also see in
Section 5, it is on their computational costs that they differ more, since WENO-Z takes about 25% less CPU
time than WENO-M.

The larger values of weights for the discontinuous stencils is one of the main differences of WENO-M and
WENO-Z over the classical WENO-JS. Another one is their superior order of convergence at critical points of
smooth solutions. This is the subject of next section.
4. Convergence at critical points

In [3], it was detected that the classical fifth-order WENO scheme achieves only third order at critical points
of smooth solutions. It was also demonstrated that this deficiency was being hidden by the large value of 10�6

assigned to the parameter � in the definition of the weights. The mapping of the weights proposed in [3] recov-
ered the formal fifth order at critical points and the enhanced numerical results in problems with shocks were
credited to this fix. In this section we analytically demonstrate that WENO-Z is fourth-order accurate at crit-
ical points of a smooth solution and also present a further modification of the WENO-Z weights that recovers
the fifth order of convergence at the critical points. Nevertheless, we also show that this modification increases
the dissipation of the WENO-Z scheme.

We depart from formula (19) and notice that the order of the WENO scheme is given by
s ¼ minð5; s1 þ 2; s2 þ 3Þ; ð32Þ
where
X2

k¼0

Akðxþk � x�k Þ ¼ OðDxs1Þ; ð33Þ

x�k � dk ¼ OðDxs2Þ: ð34Þ
We will examine the values of s1 and s2 for a smooth function with a critical point of order ncp P 1, which is a
function f with vanishing derivatives for all order less than and equal to ncp:
f 0ðxcÞ ¼ � � � ¼ f ðncpÞðxcÞ ¼ 0; ð35Þ

where the superscript denotes the order of differentiation. To simplify notation, we drop the superscript Z for
the WENO-Z weights xZ

k in this section.
Using the definition of the WENO-Z weights (28), it is easily seen that
ak � dk ¼ dk
s5

bk þ �
implies xk � dk ¼ O

s5

bk þ �

� �
: ð36Þ
It is also easily seen from the Taylor series formulae (12)–(14) and (26) for the smoothness indicators bk and s5

that in the presence of a critical point of order ncp, we have
bk ¼ OðDx2ðncpþ1ÞÞ and s5 ¼
OðDx5Þ if ncp 6 1;

OðDx2ðncpþ1ÞÞ else:

	
ð37Þ
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Applying these to (36), we obtain the value of s2 as below:
Table
The le

NþD�

DþD�

s1
xk � dk ¼
OðDx3Þ if ncp ¼ 0

OðDxÞ if ncp ¼ 1

Oð1Þ if ncp P 2

8><
>: or s2 ¼

3 if ncp ¼ 0;

1 if ncp ¼ 1;

0 if ncp P 2:

8><
>: ð38Þ
For s1, we expand (33) as
X2

k¼0

Akðxþk � x�k Þ ¼ Xþ � X� ¼ NþD� � N�Dþ

DþD�
; ð39Þ
where
X� ¼
X2

k¼0

Akx
�
k ¼

P2
k¼0F �k ðAkÞ

1þ
P2

k¼0F �k ð1Þ
with F �k ðcÞ ¼ s�5 c

dk

bk
; ð40Þ
and
N� ¼ s�5
Y2

k¼0

b�k

 !X2

k¼0

Akdk

b�k
; D� ¼

Y2

k¼0

b�k

 !
þ s�5

Y2

k¼0

b�k

 !X2

k¼0

dk

b�k
; ð41Þ
where we used that
P2

k¼0Akdk ¼ 0 and
P2

k¼0dk ¼ 1.
The leading order of (39), s1, can be found with the aid of a symbolic algebra program by substituting the

Taylor series expansion of the smoothness indicators bk, subjected to a critical point of order ncp (see Table 1).
The order of the WENO-Z scheme, s ¼ minð5; s1 þ 2; s2 þ 3Þ, is shown at Table 2. Note that WENO-Z attains
order 4 at a first-order critical point, improving over WENO-JS which attains only order 3, as shown in [3].
See also Table 3 that shows the L1 error and rate of convergence of the WENO-JS and WENO-Z schemes for
f ðxÞ ¼ x3 þ cosðxÞ, which has a first-order critical point at x ¼ 0, but whose third-order derivative is not zero.
The computations were done in Matlab using its variable precision functions with 64 digits and a value of
� ¼ 10�40. This was necessary because of the roundoff error in the standard double precision due to the very
small values of Dx that had to be used in order to detect the fourth-order convergence of WENO-Z at the crit-
ical point.

Only a small modification on the formulae of the weights (28) is necessary to recover the fifth-order accu-
racy at a first-order critical point. If instead we define the new weights as
xz
k ¼

az
kP2

l¼0a
Z
l

; az
k ¼

dk

bz
k

¼ dk 1þ s5

bk þ �

� �q� �
; k ¼ 0; 1; 2; ð42Þ
with q ¼ 2, then fifth order is achieved when ncp ¼ 1. Note that both definitions agree when q ¼ 1. This is easy
to understand, since for a smooth function, increasing the value of q in (42) decreases the correction of the
WENO-Z weights to the ideal weights fdkg, making the scheme closer to the optimal central scheme. On
the other hand, for discontinuous problems, the ratio s5

bk
is much larger for the continuous substencils than

for the one containing the discontinuity. Therefore, increasing q decreases the relative importance of the dis-
continuous substencil, making the scheme more dissipative. Nevertheless, the results in Fig. 2, along with the
ones of next section, show that due to the essential O(1) error of problems with discontinuities, fourth order of
convergence at critical points does not keep WENO-Z, as simply defined in (28), with q ¼ 1, to obtain results
in problems with shocks that are equivalent to the ones of the WENO-M scheme. This confirms that the larger
1
ading order term of (39), s1, as a function of ncp

ncp

0 1 2 P2

� N�Dþ OðDx18Þ OðDx26Þ OðDx36Þ OðDx12ðncpÞÞ
OðDx12Þ OðDx24Þ OðDx36Þ OðDx12ðncpÞÞ
6 2 0 0



Table 2
Order of convergence of the WENO-Z scheme

ncp

0 1 2 P2

s1 6 2 0 0
s2 3 1 0 0
s ¼ minð5; s1 þ 2; s2 þ 3Þ 5 4 2 2

Table 3
The L1 error and rate of convergence of the WENO-JS and WENO-Z schemes (for q ¼ 1 and q ¼ 2) at the first-order critical point x ¼ 0
of the function f ðxÞ ¼ x3 þ cosðxÞ with � ¼ 10�40

Dx WENO-JS WENO-Z, q ¼ 1 WENO-Z, q ¼ 2

Error Order Error Order Error Order

1.00e�3 0.16e�10 9.87e�12 2.08e�13
5.00e�4 2.09e�10 2.95 6.45e�13 3.93 7.45e�15 4.80
2.50e�4 2.66e�11 2.97 4.12e�14 3.96 2.48e�16 4.91
1.25e�4 3.35e�12 2.98 2.60e�15 3.98 7.98e�18 4.96
6.25e�5 4.20e�13 2.99 1.63e�16 3.99 2.53e�19 4.98
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weights attributed to discontinuous stencils by WENO-M and WENO-Z, although by distinct approaches, is
the essential improvement of these schemes with respect to WENO-JS.

5. Numerical experiments

In this section, we compare the numerical performance of WENO-Z with the classical WENO-JS and its
version with mapping, WENO-M. In all the numerical experiments below, WENO-Z refers to the definition
in (28) and (42) with q ¼ 1. This is to make the point that the smaller dissipation of WENO-Z, as pointed out
before in Sections 3 and 4, has much more influence than its rate of convergence at critical points when solving
problems with shocks. For that matter, the solutions obtained with both versions of WENO-Z, q ¼ 1 and
q ¼ 2, show the same order of convergence at discontinuous solutions, not justifying a separate presentation.
A more detailed analysis of the WENO-Z schemes for several values of q, including higher orders versions, is
left for an upcoming article.

The numerical presentation of this section starts with the solution of a classical problem of advection of a
function with discontinuities, followed by the solution of the one dimensional Euler system of equations with
Riemann initial value problems such as the Sod, Lax and 123; the Mach 3 shock–density wave interaction, the
interactive blastwaves problem and finishes with 2D simulations on the shock–vortex interaction and the
Mach 4.46 Richtmyer–Meshkov Instability (RMI) problem with a single mode perturbation along a xenon
and argon gases interface.

In the following experiments, the ODEs resulting from the semi-discretized PDEs are evolved in time by the
third-order total variation diminishing Runge–Kutta scheme (RK-TVD) [2]:
~U 1 ¼ ~U n þ DtLð~U nÞ;

~U 2 ¼ 1

4
ð3~U n þ ~U 1 þ DtLð~U 1ÞÞ;

~U nþ1 ¼ 1

3
ð~Un þ 2~U 2 þ 2DtLð~U 2ÞÞ;

ð43Þ
where L is the spatial operator. The CFL number is set to be 0.4 for all WENO schemes and Dt is bounded by Dx
5
3.

The numerical experiments presented here were run on a AMD Opteron(tm) 250 processor with 3 GB of
memory. In order to ensure fairness in the comparison of CPU timings, all three schemes shared the same sub-
routine calls and were compiled with the same compilation options including optimization ones. The only
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differences between the implementation of the three WENO schemes were on the subroutines for computing
the different related WENO weights. In all the experiments to follow, we took � ¼ 10�6 for WENO-JS and
� ¼ 10�40 for WENO-M and WENO-Z, in order to compare with the classical scheme at its best.

5.1. The linear advection problem

In this section, we apply WENO-Z to the linear transport of discontinuous functions in the case of an initial
condition consisting of a Gaussian, a triangle, a square-wave and a semi-ellipse, given by
Table
The L1

with th

N

50
100
200
400
800

1600
uðx; 0Þ ¼

1
6
½Gðx; b; z� dÞ þ 4Gðx; b; zÞ þ Gðx; b; zþ dÞ�; x 2 ½�0:8;�0:6�;

1; x 2 ½�0:4;�0:2�;
1� j10ðx� 0:1Þj; x 2 ½0; 0:2�;
1
6
½F ðx; a; a� dÞ þ 4F ðx; a; aÞ þ F ðx; a; aþ dÞ�; x 2 ½0:4; 0:6�;

0; otherwise;

8>>>>>><
>>>>>>:

Gðx; b; zÞ ¼ e�bðx�zÞ2 ;

F ðx; a; aÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxð1� a2ðx� aÞ2; 0Þ;

q
ð44Þ
where the constants are z ¼ �0:7; d ¼ 0:005; b ¼ log 2

36d2 ; a ¼ 0:5 and a ¼ 10. The advection equation ut ¼ ux was
solved until the final time t ¼ 8 on the interval [�1,1] with periodic boundary conditions and the results of
WENO-Z are compared against the ones of WENO-JS and WENO-M, all shown in Table 4.

Figs. 4 and 5 along with Table 4 show that WENO-Z behaves quantitatively and qualitatively equivalent to
WENO-M with regards to the improvements over WENO-JS. Note that the lower order of WENO-Z at the
critical points is less relevant than its smaller dissipation if one wants to obtain sharper representations of the
discontinuities.

5.2. One dimensional Euler equations

In this section, we present numerical experiments with the one dimensional system of the Euler equations
for gas dynamics in strong conservation form:
Qt þ Fx ¼ 0; ð45Þ

where
Q ¼ ðq; qu;EÞT ; F ¼ ðqu; qu2 þ P ; ðE þ PÞuÞT ; ð46Þ

the equation of state is given by
P ¼ ðc� 1Þ E � 1

2
qu2

� �
; c ¼ 1:4 ð47Þ
and q; u; P and E are the density, velocity, pressure and total energy respectively.
4
error and its rate of convergence for the WENO-JS, WENO-Z and WENO-M schemes, when solving the linear transport equation
e discontinuous initial condition (44) at the final time t ¼ 8

WENO-JS WENO-Z WENO-M

Error Order Error Order Error Order

4.64e�1 3.14e�1 3.29e�1
2.11e�1 1.13 1.65e�1 0.93 1.69e�1 0.91
9.32e�2 1.18 6.78e�2 1.28 7.04e�2 1.29
4.01e�2 1.21 3.10e�2 1.12 3.23e�2 1.12
1.94e�2 1.05 1.53e�2 1.01 1.59e�2 1.01
9.93e�3 0.96 7.73e�3 0.99 8.06e�3 0.98
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Fig. 4. Numerical solution and absolute pointwise error of the advection equation with the discontinuous initial condition (44) as
computed by the WENO-JS, WENO-M and WENO-Z with N ¼ 200 at t ¼ 8.
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Fig. 5. Numerical solution and absolute pointwise error of the advection equation with the discontinuous initial condition (44) as
computed by the WENO-JS, WENO-M and WENO-Z with N ¼ 400 at t ¼ 8.
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Following [1], the hyperbolicity of the Euler equations admits a complete set of right and left eigenvectors
for the Jacobian of the system. The eigenvalues and eigenvectors are obtained via the linearized Riemann sol-
ver of Roe [4] and the first-order Lax-Friedrichs flux is used as the low order building block for the high-order
reconstruction step of the WENO schemes (see Eq. (2.5) in [1]). After projecting the fluxes on the characteristic
fields via the left eigenvectors, the high-order WENO reconstruction step is applied to obtain the high-order
approximation at the cell boundaries, which are projected back into the physical space via the right eigenvec-
tors. See [1] for further details of the algorithm.

5.2.1. Riemann initial value problems: Sod, Lax and 123

In this section, we show that the WENO-Z scheme passes the test of the Riemann initial value problems,
also known as the shock-tube problems: the Sod problem, the Lax problem and the 123 problem. The numer-
ical experiments were conducted using 200 grid points.
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For the Sod problem, the density q, velocity U and pressure P in the left and the right stages of the shock
are:
R
ho

0.

0.

0.

0.

1

Fig. 6.
lines a
ðq;U ; P Þ ¼
ð0:125; 0; 0:1Þ �5 6 x < 0;

ð1; 0; 1Þ 0 6 x < 5

	
ð48Þ
and the final time is t ¼ 2.
For the Lax problem, the density q, velocity U and pressure P in the left and the right stages of the shock

are:
ðq;U ; P Þ ¼
ð0:445; 0:698; 0:3528Þ �5 6 x < 0;

ð0:500; 0:000; 0:5710Þ 0 6 x 6 5

	
ð49Þ
and the final time is t ¼ 1:3.
For the 123 problem, the density q, velocity U and pressure P in the left and the right stages of the shock

are:
ðq;U ; P Þ ¼
ð1; �2; 0:4Þ �5 6 x < 0;

ð1; 2; 0:4Þ 0 6 x 6 5

	
ð50Þ
and the final time is t ¼ 1.
Numerical results from all schemes follow the same pattern as before, with WENO-Z and WENO-M being

more accurate than the classical scheme due to their lesser dissipativity. The simulated density q of the Sod,
Lax and 123 problems are shown in Fig. 6. The numerical results (symbols) are shown along with the exact
solutions (solid black lines).

5.2.2. Shock–density wave interaction

In this section, we consider the one dimensional Mach 3 shock-entropy wave interaction [5], specified by the
following initial conditions:
ðq; u; PÞ ¼ ð3:857143; 2:629369; 31
3
Þ �5 6 x < �4;

ð1þ 0:2 sinðkxÞ; 0; 1Þ �4 6 x 6 5;

	
ð51Þ
where x 2 ½�5; 5� and k ¼ 5. The solution of this problem consists of a number of shocklets and fine scales
structures which are located behind a right-going main shock.

Fig. 7(a) and (b) provide a comparison for all schemes at t ¼ 2 with an increasing number of points. We
shall refer to the solution computed by the WENO-M scheme with N ¼ 2000 points as the ‘‘exact” solution.
At a low resolution, N ¼ 200, as shown in Fig. 7(a), WENO-M and WENO-Z capture much more fine scale
structures of the solution than WENO-JS, particularly at the high-frequency waves behind the shock.
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Fig. 7. Solution of the Mach 3 shock–density wave interaction with k ¼ 5 as computed by WENO-JS, WENO-M and WENO-Z schemes,
at time t ¼ 2 with (a) N ¼ 200, (b) N ¼ 300 points. The ‘‘exact” solution is computed by the WENO-M scheme with N ¼ 2000 points.
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Increasing the resolution to N ¼ 300, as shown in Fig. 7(b), we see that both WENO-M and WENO-Z con-
verge faster than WENO-JS.

In Fig. 8, the wave number k is increased to 10, yielding rougher numerical approximations at the sine wave
density field perturbation. As before, WENO-M and WENO-Z show much more accurate results than the
classical WENO-JS.

5.2.3. Interacting blastwaves

The one dimensional blastwaves interaction problem of Woodward and Collela [7] has the following initial
condition, with reflective boundary conditions:
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Fig. 8. Solution of the Mach 3 shock–density wave interaction with k ¼ 10 computed by the WENO-JS, WENO-M and WENO-Z with
N ¼ 510 points. For clarity, only symbols at every fourth data point are plotted. The ‘‘exact” solution is computed by the WENO-M
scheme with N ¼ 2000 points.



x

R
ho

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

WENO-JS
WENO-M
WENO-Z
"Exact"

Fig. 9. Solution of the interactive blastwaves problem computed by the WENO-JS, WENO-M and WENO-Z with N ¼ 400 points. For
clarity, only symbols at every other data point are plotted. The ‘‘exact” solution is computed by the WENO-M scheme with N ¼ 4000
points.

3206 R. Borges et al. / Journal of Computational Physics 227 (2008) 3191–3211
ðq;U ; P Þ ¼
ð1; 0; 1000Þ 0 6 x < 0:1;

ð1; 0; 0:01Þ 0:1 6 x < 0:9;

ð1; 0; 100Þ 0:9 6 x 6 1:0:

8><
>: ð52Þ
The initial pressure gradients generate two density shock waves that collide and interact later in time, forming
a profile as shown in Fig. 9 at t ¼ 0:038. All three schemes converge, as the number of points increase, to the
reference solution computed by the WENO-M with N ¼ 4000 points. As before, WENO-M and WENO-Z
show an improved convergence with respect to WENO-JS, due to their smaller dissipation. Fig. 10 presents
a separate, and more detailed, comparison between WENO-M and WENO-Z, at two different portions of
the domain. Careful examination of Fig. 10(a) shows that WENO-Z obtains a sharper peak near x ¼ 0:78.
In Fig. 10(b), the high-gradient structure at x ¼ 0:86 is better resolved with WENO-Z, as well as the contact
discontinuity near x ¼ 0:8.

5.3. Two dimensional Euler equations

In this section, we apply the WENO schemes to

� the Shock–vortex interaction (SV); and
� the Richtmyer–Meshkov instability (RMI)

in a rectangular domain.
The governing equations are the two-dimensional Euler equations in Cartesian coordinates given by
Qt þ Fx þGy ¼ 0; ð53Þ
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where
Q ¼ ðq; qu; qv;EÞT ;
F ¼ ðqu; qu2 þ P ; quv; ðE þ P ÞuÞT ;
G ¼ ðqv; quv; qv2 þ P ; ðE þ PÞvÞT

ð54Þ
and the equation of state is
P ¼ ðc� 1ÞðE � 1

2
qðu2 þ v2ÞÞ; c ¼ 1:4: ð55Þ
Free stream inflow and outflow boundary conditions are imposed in the inflow and outflow boundaries,
respectively, in the x-direction. A periodical boundary condition is imposed in the y-direction.

5.3.1. Shock–vortex interaction

The tangential velocity profile of the counter-clockwise rotating vortex [8] centered at ðxc; ycÞ is given in
polar coordinates by
UðrÞ ¼
Crðr�2

0 � r�2
1 Þ; 0 6 r 6 r0 < r1;

Crðr�2 � r�2
1 Þ; r0 6 r 6 r1;

0; r > r1;

8><
>: ð56Þ
where r0 ¼ 0:2; r1 ¼ 1:0, the vortex strength C ¼ 0:25 and the Mach number Ms ¼ 3.
In the Shock–Vortex interaction, an acoustic wavefront is generated and fine scale structures are

formed behind the main shock. These are well captured by all three WENO schemes, with the same pat-
tern as before, where less dissipation is noted at the WENO-Z and WENO-M solutions. The density q
and velocity v at time t ¼ 1 computed by the WENO-Z scheme with grid resolution N x ¼ N y ¼ 400 are
shown in Fig. 11.

In Table 5, the CPU timing (in seconds) per Runge–Kutta step of the three WENO schemes for this prob-
lem shows that WENO-Z is the most efficient scheme and about 25% faster than the WENO-M scheme, since
WENO-Z does not make use of any mapping to compute the weights.
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5.3.2. Richtmyer–Meshkov instability

We use a rectangular domain ½0; 5� 	 ½�1:8; 1:8� with a shock Mach number Ms ¼ 4:46 interacting with a
single mode sinusoidal perturbed interface along a xenon (Xe) and argon (Ar) gases interface. The initial con-
dition of the single mode Richtmyer–Meshkov instability is specified as follows:

� Rankine–Hugoniot conditions for the shock,
� Pre-shock temperature T ¼ 296 K,
� Pre-shock pressure P ¼ 0:5 atm,
� Xenon and Argon density are qXe ¼ 2:90	 10�3 g

cm3 and qAr ¼ 0:89	 10�3 g
cm3 respectively, at half of the

normal atmospheric pressure,
� Specific heat ratio c ¼ 5

3
,

� Atwood number At ¼ 0:54,
� Mach number M ¼ 4:46,
� Wave length k ¼ 3:6 cm,
� Amplitude a ¼ 1:0 cm.
� The diffusive interface is modeled with an exponential function, i.e.

1

1 .

1

-

Sðx; yÞ ¼
1; d 6 0;

expð�ajdjbÞ; 0 < d < 1;

0; d P 1;

8><
>: ð57Þ
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where

d ¼ ðxs þ a cosð2py=kÞ þ dÞ � x
2d

; ð58Þ

d ¼ 0:2 cm is the interface thickness, b ¼ 8 is the interface order, xs ¼ 0:5 cm is the location of the interface
and a ¼ � ln �, where � is the machine zero. The conservative or primitive variables are scaled according to
Sðx; yÞ between the xenon and argon gases.0
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h numberMs¼4:46 at timet¼50ls as computed by



Table 6
CPU timing (in seconds) per Runge–Kutta step of the Richtmyer–Meshkov instability problem as computed by the WENO-JS, WENO-Z
and WENO-M schemes

Grid size WENO-JS WENO-Z WENO-M

800	 800 6.46 6.07 8.13

3210 R. Borges et al. / Journal of Computational Physics 227 (2008) 3191–3211
The initial condition of the simulation is shown in Fig. 12. As the shock wave collides with the interface
separating the two gases with different densities, the sinusoidal perturbed interface is accelerated, compressed
and amplified following the transmission and refraction of the shock. Baroclinic vorticity generated along the
gases interface amplifies the perturbation of the interface. The heavier xenon gas (Xe) will penetrate into the
lighter argon gas (Ar) forming finger-like structures – bubbles and spikes. A bubble (spike) is a portion of the
light (heavy) gas penetrating into the heavy (light) gas.

Fig. 13 shows the density q and velocity v at time t ¼ 50 ls using the WENO-Z and WENO-M schemes
with grid resolution Nx ¼ N y ¼ 800. The results indicate that the WENO-Z scheme works very well for this
class of problems, generating equivalent solutions as the WENO-M scheme.

Table 6 shows the CPU timing per Runge–Kutta step for all three WENO schemes at the grid resolution of
Nx ¼ N y ¼ 800 with similar results as for the shock–vortex interaction.

6. Conclusions

We have devised an improved version of the fifth-order WENO finite differences scheme for conservation
laws of [2] that makes use of higher order information already contained in the original framework of the clas-
sical WENO scheme. The new smoothness indicators proposed take into account the novel extra information
on the regularity of the solution and provide a convex combination of stencils with enhanced order of conver-
gence at critical points and less dissipation at shocks, but still non-oscillatory. The new WENO scheme gen-
erates numerical solutions with the same accuracy as the mapped WENO of [3] with smaller computational
cost.

Our analysis also indicated that the improvements obtained by the mapped WENO over the classical
scheme when solving problems with shocks are not due to its superior accuracy at critical points of the solu-
tions, but to the larger weights it assigns to stencils with discontinuities. Similarly, the new WENO scheme
assigns even larger weights to discontinuous stencils, obtaining solutions that are sometimes sharper, although
its rate of convergence at critical points is intermediary between those schemes.

Research is currently underway to extend the new WENO idea to higher order WENO reconstruction
schemes and will be reported at an upcoming paper
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